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User’s Guide for ENSAERO - FE 
Parallel Finite Element Solver 

Lloyd B. Eldred and Guru P. Guruswamy 
Ames Research Center 

Summary 

A high fidelity parallel static structural analysis capability is created and interfaced to the multi 
disciplinary analysis package ENS AERO-MPI of Ames Research Center. This new module 
replaces ENSAERO’s lower fidelity simple finite element and modal modules. Full aircraft struc- 
tures may be more accurately modeled using the new finite element capability. Parallel computa- 
tion is performed by breaking the full structure into multiple substructures. This approach is 
conceptually similar to ENSAERO’s multizonal fluid analysis capability. The new substructure 
code is used to solve the structural finite element equations for each substructure in parallel. NAS- 
TRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to 
create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each 
substructure. The new parallel code then uses an iterative preconditioned conjugate gradient 
method to solve the global structural equations for the substructure boundary nodes. 

Introduction 

Accurate structural modeling of a real aircraft by discretization has constraints that are 
completely independent from those faced by the aerodynamics discipline. A structural model 
focuses on the main internal features of the aircraft: the wing’s spars and ribs and the fuselage’s 
bulkheads and stringers. An aircraft aerodynamic model focuses on critical aerodynamic features: 
regions of separation, shocks, etc. These major features of interest are completely unrelated to 
each other. 

An attempt at using common meshes is at best doomed to inefficiency, and more likely to failure. 
A much more efficient and powerful approach is to interface the highest fidelity single discipline 
technologies available. ENSAERO (refs. 1-3) implements the Reynolds averaged thin-layer 
Navier-Stokes equations. NASTRANs element library allows the accurate finite element model- 
ing of the aircraft components as plates, bars, and beams and the substructure-based structural 
system solver allows for efficient parallel solution of the structural equations. 

A fluid-structure interface calculation is performed on the aircraft skin. Fluid forces cause struc- 
tural loading, causing deflection, which in turn changes the fluid field. Since the fluid surface grid 
does not, in general, correspond to the structural grid on the aircraft skin, an interpolatiodextrap- 
olation scheme is used to transfer the fluid loads to the structural nodes and the structural deflec- 
tions to the fluid grid. This work builds on earlier domain decomposition work by Byun and 
Guruswamy( 1-3). That work involved interfacing the Navier StokesEuler solver with structural 
models. The structural models included a modal model and a parallel finite element model, using 



a partitioning approach. 

Approach 

A high fidelity parallel finite element capability, ENSAERO-FE has been developed. Parallel 
computations are performed on multiple substructures with an iterative scheme used to calculate 
the boundary values. A standard finite element package, in this case NASTRANKOSMIC, is 
used as a preprocessor to generate the substructure stiffness matrices. The new parallel code 
solves the system of equations. Figure 1 shows how the structural solution is calculated in 
parallel. 

i 

The interactive parallel solution of the finite element system is strongly based on that proposed by 
Carter, et al(ref 5). It uses a preconditioned conjugate gradient method. That scheme has been 
adapted to run on the IBM SP-2 and the SGI Origin 2000 , Ames Research Center using the MPI 
for interprocess communication. 

To use this scheme, the full structure is broken into substructures. The finite element stiffness 
matrices are assembled for each substructure, but never for the full structure. The use of connec- 
tivity information allows data to be exchanged about nodes that are shared between two or more 
substructures. This method has been shown to be scalable and efficient(ref. 5) .  

Dynamic structural analysis is performed using the Newmark (constant average accelleration) 
method. A linear accelleration method is also available. This method converts the dynamic system 
of equations into a pseudo-static system than can be solved by the same core parallel solver. 

ENSAEROJX is dependent on an external code to generate the substructure stiffness matrices. 
As this is a one time operation for linear structures, there is little to be gained by parallelizing it. 
And there is no need to go to the effort and expense of duplicating standard codes that are readily 
available. In thiscase, NASTRAN/COSMIC(ref. 5 )was used as a front end, although any similar 
code should be easily adaptable. This also allows access to the full range of standard preprocess- 
ing and CAD tools designed for NASTRAN, as well as use of the supply of existing data decks. 

Once the user has used the front end program to create the substructure stiffness matrices, he or 
she builds input files describing the substructure connectivity and boundary conditions. Depend- 
ing on the case being run, input load file may also be set up or the loads may be calculated by an 
attached aerodynamic code. In this case, ENSAERO-MPI(ref. 6) is used. 

ENSAERO-MPI is an aeroelastic analysis package which couples the Reynolds averaged thin- 
layer Navier-Stokes equations with structural analysis. Its existing, limited, low fidelity simple 
finite element or modal structural capabilities were replaced by the new finite element code. 
ENSAERO’s internal interpolatiodextrapolation capability was adapted to exchange the aircraft 
aeroelastic data between the two disciplines. 

+ 

The codes for the two disciplines are run in parallel. ENSAERO uses one processor per aerody- 
namic zone. ENSAERO-FE similarly uses one processor per substructure. The number of proces- 
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sors used varies substantially from problem to problem, depending on problem size and desired 
performance. For this work, the aerodynamic code has typically used around ten processors and 
the structural code around five. The MPI library is used for communication between like codes as 
well as across disciplines. NASA Ames’ MPIRUN library is used to manage processor allocation 
and some communications set-up chores. 

Interpolatiodextrapolation of loads and deflections is performed using an intermediary interface 
grid. This interface grid is made of the structural skin elements (internal structural elements such 
as spars are ignored). These skin elements are converted to triangular interface elements for ease 
of interpolation. A search algorithm locates fluid grid points that fall within each triangular inter- 
face element and computes the appropriate bilinear interpolation coefficients. Figure 2 illustrates 
the matching of the two domain grids. Very dense fluid grids near the wing tip and at wing mid 
span (near a control surface) result in a large number of fluid points per interface triangle in these 
regions. 

Validation 

The code has been validated for a variety of problems ranging from simple to complex. This is 
discussed in reference 7. A typical converged aeroelastic result is illustrated in figure 3. 
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User’s Manual 
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1. Introduction 

ENSAERO-FE is the parallel substructure-based finite element solution code. It 
can run as a standalone code or be used as a structural module for ENSAERO. It 
uses NASTRAN created stiffness matrices for each substructure, and iteratively 
solves for the structural deflections. Loads and deflections are exchanged with the 
EXSAERO-F fluids module via MPI. 

The general approach used in the code is to break the aircraft structure into multi- 
ple substructures. This is very similar to breaking the fluid analysis domain into 
multiple zones. Each substrcture is assigned to a single computational node. That 
node solves for the deflections of its substructure and communicates with the 
other nodes to determine the deflections of the shared (also called boundary or 
external) nodes. 

Each substructure is modeled in NASTRAN using its full library of elements. 
NASTRAN is instructed to generate the stiffness, mass, and node ordering matri- 
ces for each substructure. Additional data files describing how the substructures 
are connected are created by the user. 

Additional input files are required to set up the fluidlstructure interaction. The first 
set of files indicates which portions of the structural model are to exchange data 
with the fluids module (i.e. the aircraft skin). A file contains various problem 
scales: dynamic pressure, reference length, and freestream velocity. Another indi- 
cates how the structural grid matches up to the fluid zones. 



2 NASTRAN Setup 

Node 133 
x = 5  

Z = 50 
y =  12 

Node 132 
x = 5  
y = 6  
~ = 5 0  

Node 140 
x =  10 

Z=50 
y=  12 

Node 147 
x =  10 
y = 6  
Z=50 

NASTRAN is used to create the stiffness (and mass) matrices for each 
substructure. Its complete library of linear elements is available. 

In order for the code to keep track of the internal/ external node 
bookkeeping necessary for this analysis, NASTRAN must not rearrange 
the stiffness matrices or apply boundary conditions to the matrices. In other 
words, NASTRA”s “Bandit” routine must be turned off. 

The following NASTRAN executive deck is used to save the unaltered 
stiffness and mass matrices, as well as some bookkeeping information: 

NASTRAN BANDIT=-1 
ID Parallel analysis 
APP DISP 
SOL MODES 
TIME 1 
ALTER 42 
OUTPUT5 KGG,,,,//-1/15//1 $ Output stiffness matrix 
OUTPUT5 MGG,,,,//-1/16//1 $ Output mass matrix 
OUTPUT5 GPL,,,,//-1/17//1 $ Output grid ordering vector 

ENDALTER 
CEND 

JUMP FINIS $ stop 

6 



. 

To use NASTRAN as an ENSAERO-FE front end, create numbered NAS- 
TRAN input files “O.dat”, “1 .dat”, etc. for each seperate substructure. 
NASTRA”s invocation script must be modified to assign file names to the 
unit numbers specified in the previous executive control deck. Modifying 
the script to contain the following definitions will accomplish this: 

set probname = $1 
set ftOS=$probname.dat 
set ft06=$probname.out 
set ftlS=k.$probname 
set ftl6=m.$probname 
set ftl7=o.$probname 

Use the ENSAERO-FE version of the 1.- -STR 
section 11) by running it for each input file: 

ivocation script(see 

nastran 0 
nastran 1 
etc. 

This will generate files containing the stiffness matrices, “k.O”, etc., the 
mass matrices, “m.O”, etc. and the ordering information, “0.0, etc. 

The “0.N file allows the user to use the same arbitrary node numbering 
scheme that is used in the NASTRAN input decks in the rest of the 
ENSAERO-FE input files. The code uses this file to connect a given node 
number to the rows and columns of the stiffnesdmass matrix that contain 
the node’s degrees of freedom. 

7 



3 Input Files 

Preprocessor 
or 

ENSA ERO- FE 

NASTRAN \ 
\ -  

There are quite a number of input files necessary to run this code. An 
external preprocessor code is used to perform all of the once-per-configura- 
tion chores in advance of using expensive parallel compuation time. At this 
point, use of the preprocessor is optional. The main code looks first for the 
preprocessed data files. If they are not found, it will read or try to read the 
various user input and NASTRAN generated files itself. Use of the prepro- 
cessor is recommended, and described in the next section. Either way, the 
input data files are the same. 

In most cases, there must be copies of the input files corresponding to each 
substructure in the problem. The letter “N’ will be used in place of the 
substructure number for these types of files (i.e. the filename “bc.”’ indi- 
cates there should be a “bc.O”, “bc.l”, etc.). There are a few input files that 
are for the entire problem. Such files end in “.dat”. 

Overview 

The following data files are required to run this code: 

k.N 
o . N  
bc.N 
c.N 

- substructure stiffness matrix 
- substructure ordering vector 
- boundary condition file 
- skin connectivity file 
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s.N - skin grid file 
bnode . dat - substructure attachement file 
scales-dat - aerodynamic scales 
i d s m .  dat - fluid/structure connectivity 
l.N - load file (standalone only, 

optional) 

Fluids Inputs 

This code does not read any of the fluids module’s input files. But, they 
have to be correctly setup to allow the combined system to work correctly. 
See the ENSAERO-MPI documentation for details. 

Finite Element Data - k.N, m.N, d.N, o.N 

See the previous section on NASTRAN use for instructions on creating 
these four files. “k.N” contains the substructure stiffness matrix, “m.” 
contains the substnctwe mass matrix, “d.W cor,+Ans ~ ! e  subs+uc~~:e 
damping matrix and “0.” contains the substructure node ordering vector. 
The mass and damping matrix files are required only for dynamic structural 
problems (and are set to zero if not supplied). The NASTRAN input decks 
“N.dat” are not required for this code. 

Boundary Conditions - bc.N 

The user must set up boundary condition (bc.N) files for each substructure. 
Most of the user-input files for ENSAERO-FE follow a standard format: 
the first line is the number of records, and each subsequent line is a record. 
A boundary condition file must exist for each substructure, even if there are 
no conditions to be enforced. In that case, the file should contain a single 
zero, “O”, entry. 

Each boundary condition record consists of a node number and a list of 
degrees of freedom to set to zero. These degrees of freedom are specified in 
NASTRAN format; i.e., 1-3 are the translational degrees of freedom, and 
4-6 are the rotations. The node numbers are the ones specified in the corre- 
sponding NASTRAN input deck. 

At this point, boundary conditions have to be configured manually. At 
some point, these could become at least partially automated by parsing the 
NASTRAN decks for the appropriate information. 
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Example bc file 

2 
1 ,123456  
2 , 23456 

In this case, node 1 is completely fixed and node 2 is only free to move in 
the x direction. 

Aircraft Skin - c.N, s.N 

In order for the loading and deflection data to be exchanged with the fluids 
code, the user must indicate what portions of the aircraft are on the “skin”. 
Only nodes and elements that are specified as skin are used to exchange 
loaadeflection data with the fluids. This specification of the aircraft skin is 
done by editing the input NASTRAN substructure data file into two addi- 
tional files indicating the grid and grid connectivity of the aircraft skin. 

The “c.N” file contains the skin grid connectivity information. This is in 
the form of NASTRAN element cards. Supported rectangular elements are 
CSHEAR, CTWIST, CQDMEM”, QDPCT, and CQUAD*. Supported tri- 
angular elements are CRTRPLT, CTRIA”, CTRIM6, CTRMEM, and CTR- 
PLT. As with the other input files for this program, the first line contains 
the number of records in the file. This is followed by a comma, and a “1” or 
a “2” indicating if the cards use one or two lines. 

Partial example c.Nfi1e 

136,l 
CQUAD4 1 3 1 2 11 10 
CQUAD4 2 3 2 3 12 11 
. .  

The ‘3.N” file file contains the skin grid information. This is in the form of 
NASTRAN “GRID” cards. Again, the first line of the file specifies the 
number of records, followed by a comma, and then a “1” or a “2” to indi- 
cate if the cards use single or double precision. 

Partial example s.N$le 

162,2 
GRID* 1 
‘GRD 1 0.15648150444 
. . .  

0.00000000000 0.00000000000QGRD 1 

c 



Substructure Attachment - bn0de .a  

The substructure attachment file “bnode.dat” is a single file for the entire 
structure. It indicates which nodes of each subtructure are attached to 
which of each other substructure. There is no requirement that correspond- 
ing nodes be numbered identically in each substructure; this file takes care 
of that detail. 

This file starts with a line indicating the number of records. Each record is 
two lines long. The first line is a count of the number of substructures listed 
in the second line. The second line is a list of paired numbers indicating the 
substructure and its node number that is to be matched to the other nodes in 
the list. 

Example bnode.dat $le 
2 
2 
0,37,1,37 
4 
0,21,1,21,4,21,5,25 

This file indicates that there are two nodes that are shared between proces- 
sors. Node 37 on processor 0 is the same as node 37 on processor 1 and 
Node 21 is the same on processors 0,1, and 4 and corresponds also to node 
25 on processor 5. Again, there is no requirement that corresponding nodes 
be called the same thing; between this file and the “o.N file, the code can 
figure out where things go. 

Aerodynamic Scales - scales.dat 

The “scales.dat” file contains problem scaling constants used by the fluids 
code. The three values are a length scale “phylen”, the dynamic pressure 
“dynpre” and the free stream velocity “frevel”. These values are used to 
convert the pressure coefficients supplied by the aerodynamic code into 
nodal forces. This file replaces the “modals.dat” file specified in the 
ENSAERO documentation for the modal structural code. 

Example scales.dat$le 

31.2963 
0.5 
10000.0 

phylen 
dVnpre 
frevel 
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Fluid/Structure Grid Connectivity - idsm.dat or idsm. N 

The “idsm.dat” or “idsm.N’ file(s) specifies the correpondences between 
the structural grid and the fluids grid. The values specified in this file for 
the structural skin are matched to the fluid grid sections with the same 
value. The fluid grid is marked by the “idph” value in “fsintf.dat”. 

Two different versions of this file are supported. The program automati- 
cally detects which one the user has chosen (by attempting to open first 
idsm.O, then idsm.dat). 

The first type of file allows one idsm value per substructure. Thus, it con- 
tains one line for each substructure. Since the number of substructures are 
known to the code by the time it reads the idsm file, no linecount line is 
necessary. 

Example idsm.dat (type 1 ) j l e  

1 
0 
0 

The second type of file allows a different idsm value for each skin element, 
but requires a file for each substructure, rather than a global file. Its format 
is a line count header followed by pairs of element numbers and idsm val- 
ues. 

Important: For the moment, the element number is ignored by the code. 
Instead the ordering is assumed to be the same as that of the c.N file. 

Partial Example idsm.N (type 2 ) j l e  

168 
1 
2 
3 
4 

. . .  

Load files - LN 

Load files are read only by the preprocessor code and are used only when 
the parallel code is run in stand-alone mode (i.e. no fluids) A record con- 
tains a node number followed by six values which are the loads applied to 
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each of the six degrees of freedom at that node. 

Note that even in stand-alone mode, the use of this file is optional. If it is 
not present, the subroutine “applyload” is called instead to generate the 
problem force vector. 

Example l j l e  

1 
11,100.0,0.0,0.0,0.0,0.0,0.0 
In this case, a load of 100.0 in the x direction is applied at node 1 1. 

Restart files - fe-output (.Nand .&t) 

The “fe-output.” and “fe-output.dat” files are used to restart the code 
from a previously finished run. They are created by the code as part of its 
final output. They are exactly the same format as the preprocessed input 
files, and thus to continue from a previous run they should be renamed to 
“fe-input” with the appropriate extensions. The code will read them just the 
same as normally preprocessed data. 



4 Preprocexe - Preprocessor 

Preprocessor 

NASTRAN 

fe-input.dat . 

/ 
User Input 

The use of the preprocesor code “preproc.exe” is strongly recommended. It 
performs all of the once-per-configuration setup computations such as gen- 
erating the fluid/structure interface and compressing the stiffness matrix. It 
is also the only way to access many recent additions to the code, such as 
dynamic structural analysis. 

The code should be run once in a directory containing all the required (and 
desired optional) input files. It will generate a global input file “fe- 
input.dat” and substructure input files “fe-input.” for each set of substruc- 
ture inputs found. 

The preprocessed data files are stored in the “StIFF” data format(see sec- 
tion 12), described in this documentation. They are architecture and oper- 
ating system independent. 

Only the preprocessor output files (fe-input.*) need be present when the 
main ENSAERO-FE code is run. It will automatically detect their presence 
and use them. In this case, any old-format (k.N, etc.) input files are ignored. 

Remember to rerun the preprocessor whenever the input data are changed. 



5 Output Files 

, 

I ENSA ERO- FE r-* FAST grids 

I . 
Restart Jiles 

A wide variety of output files are created by the program including plain 
text and FAST plottable files for both the full structure and the component 
substructures. 

The “deflections.”’ files contain the plain text six degrees of freedom 
deflections for each substructure and the corresponding input node number. 

The “deflgrid.” files contain a FAST format grid file for the deflected sub- 
structure skin. To load them in FAST, select “Grid”, “Formatted” and 
“Unstructured”. The “SurferU” module must be used to plot the unstruc- 
tured grid. This grid is made up of the interpolation triangles used to map 
loads and deflections between fluids and structures. 

“deflgrid-dat” contains a FAST format grid for the entire deflected struc- 
tural skin. 

The “deflgrid2.N” and “deflgrid2.dat” files contain a different version of 
the same grid that is in the files without the “2”. This version of the file 
allows the user to map a scalar onto the grid, a feature not normally avail- 
able in a FAST unstructured grid. It does this by tripling the grid and con- 
nectivity information. Once this is done, a color can be specified for each 
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skin triangle. 

The “skingrid.N’, “skingrid.dat”, “skingrid2.N’ and “skingrid2.dat” follow 
the same naming scheme as the “deflgrid” files. In this case, they contain 
the undeflected skin grids in a FAST format for each substructure and for 
the full structure. 

The “fgrid.N’ files contain the merged fluid dynamics grids. 

The files “fe-output.dat” and “fe-0utput.N’ contain the data necessary to 
restart the code and continue from the last timestep of a completed run. 
They are identical in format to the preprocessed “fe-input” files and only 
need to be renamed in order to be used. 

“fe-converge.dat” contains the history of the deflection of a single degree 
of freedom. At this point, that degree of freedom must be configured inside 
the source code. 

16 



6 Running stand-alone 

ENSAERO-FE can be run as a stand-alone structural analysis code as well 
as a module of ENSAERO-F. 

The finite element code will run in stand-alone mode if either of the follow- 
ing conditions is met: 

1) The file “input/multid.dat” (an ENSAERO-F input file) does not exist. 
2) The file “input/multid.dat” specifies no fluids codes are to be run. 

In stand-alone mode the user has two choices for specifying the structural 
loads. “1 . N” (the letter ell, not the number one) files can be used to spec- 
ify static loading. The load input files must be present during preprocess- 
ing. Load input is not supported directly by the main code. 

The second option for loading is to modify the “applyload” subroutine. , 

Since the subroutine is called every time step, dynamic or nonlinear 
loading is possible. Note that this subroutine is called only if no static load 
files were found during preprocessing. 

17 



7 Dynamic Structural Analysis 

._ e.5 

ENSAERO-FE can perform dynamic structural analysis using the Newmark 
(constant average accelleration) method. A linear accelleration method is also 
supported. The method used may be changed by editing the parameters in the 
“newmarkinit” subroutine found in sfrucf/dynamic.J 

When run with the fluids code, ENSAERO-FE performs a dynamic analysis 
when “itask” is set to 4 or 5. This analysis is identical for both itask settings. A 
time step matching that used by the fluids is used. 

When run standalone, the dynamic options are controlled by two lines in the 
main routine, parstrucf.f , seen below. The logical variable “dynamicrun” 
should be set to “.true.” or “.false.” and the time step size “deltime” should be 
set as desired. Note that the Newmark method is unconditionally stable. 

c Control f o r  standalone dynamic structural analysis 
c when run with fluids code, fluids inputs will 
c overide these settings 

dynamicrun=.false. 
deltime=O.O 
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8 Restarting 

ENSAERO- FE - 
The program supports restarting if the user wishes to continue an analysis. 
The previous run must have completed normally for this to work. 

See the ENSAERO documentation for full details, but a very short sum- 
mary appears below. Note that steps 1 and 2 are not required when running 
in stand alone mode. 

1) Edit “ensaero_f.dat”: 
Change the “restart” variable to 1 or 2. 
Change the “start” and “stop” timesteps to the new values 

(ie., to restart a run that ran from time steps 1-50, change these to 
51 and 100). 

2) Rename or copy all “ restart.out-X-Y” files as “restart.dat-X-Y”. 
These files contain the fluid solution. 

And for the structures code: 

3) Rename or copy “fe-output.dat” as “fe-input.dat”. 

4) Rename or copy all “fe-output.” files as “fe-input.”. 
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9 Other Issues 

This program is configured for medium sized problems. The program will 
complain and stop if a user tries to run a problem too large for the PARAM- 
ETERS it was compiled with. These are contained in “parsub.h” and are 
well documented within that file if they need to be increased. 

Relaxation of the structural response is supported in the “relaxscale” sub- 
routine in struct/parsubsub.f. That routine returns a value used to scale the 
computed structural perturbation based on the current loop value. This sup- 
port is intended to damp out oscillations in the iteration history of static 
aeroelastic solution of very flexible structures. It may be useful for other 
purposes as well. 
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Example Problems 

~ - -  
..:. . 
..:, j ,:. . . 

._ -. r . , 

A few example problems are included with the package for learning and testing 
purposes. They are found in the examples subdirectory. 

Flat Plate Problem: exumples/pZate 

The flat plate problem can be used to test the stand alone capability of the code, 
as well as scalability. A simple FORTRAN program is used to generate a flat 
plate composed of as many QUAD4 elements as desired and broken into as 
many substructures as desired. 

The first step in setting up a problem is to edit the control.dut file. 

Sample controLdut file 

40 
5 0  
2 
2 
1.0 
1.0 
0.1 
3.Oe6 
0.30 

# elements in x direction 
# elements in y direction 

# substructure sections in x dir 
# substructure sections in y dir 
x dimension, length 
y dimension, length 
z dimenzion, thickness 
e, Young‘s modulus 
nu, Poisson’s ratio 
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1.0 
1 2 3 4 5 6  
6 
6 
6 
6 

rho, density 
bottom edge bound. cond. 
Left edge BC 
top edge BC 
right edge BC 
interior BC (zero if none) 

The comments on the right should make the file fairly self explanatory. The 
boundary condition specifications are NASTRAN style and list which 
degrees of freedom, 1-6, are constrained to be zero on each edge and in the 
interior. 

The next step is to edit the files heud.dut and tuil.dut. These two files will 
be copied to the top and bottom of the generated bulk data decks. The 
heud.dut file should contain the desired NASTRAN executive and case 
control cards. The tuiZ.dut may just contain an “ENDDATA” card. 

After editing these files as desired, run plate. This will generate the desired 
number of NASTRAN bulk data decks as well as boundary condition and 
connectivity files. Next, run either the script cut-em or cut-em2 (use cut- 
em2 if you have 11 or more substructures) to concatenate the header and 
footer files with the bulk data files. 

You will now have numbered NASTRAN input decks for each plate sub- 
structure, e g ,  O.dut. Run the ALTERed NASTRAN on each of these input 
files to generate the stiffness and ordering files. 

Create loading files, Z.N, as desired, then run the preprocessor and finally 
the main code. 

Arrow Wina - Body problem: exumpleduwb 

Complete input decks for both stand alone and aeroelastic analysis of a 
simple arrow wingbody aircraft are supplied. This model is the basis for 
all of the aircraft figures in this documentation and uses eight fluids zones 
and three substructures. 



10 File Naming Conventions 

“N’ is the substructure/parallel processor number 
(NAST) indicates a file generated by a NASTRAN run 
(USER) indicates a user generated file 
(ENSAERO-FE) indicates a file generated by a previous run 

Input files (for preprocessor) 
N.dat - NASTRAN input deck (USER) 
N.out - NASTRAN run output (NAST ) 
bc .N - Boundary condition file (USER) 
c .N - Skin connectivity file (USER 
k.N - Stiffness matrix (NAST 
m.N - Mass matrix (NAST 
d.N - Damping matrix (NAST 
o .N - Node ordering file (NAST 
s .N - Skin grid file ( NAST 
bnode-dat - Substructure attachment file (USER 
scales-dat- Aerodynamic scales (USER) 

idsm.dat - Fluid/structure grid connect (USER) 
idsm.N - Fluid/structure grid connect (USER) 

pick =et 

Preprocessor Output Files 
fe-input.dat - global (skin grid, etc.) 
fe-input.N - local (stiffness matrix, etc.) 

Output Files 
def1ections.N - text deflections 
def1grid.N - FAST substucture deflected skin grid 
deflgrid.dat - FAST full structure deflected skin grid 
deflgrid2.N - tripled FAST substructure deflected skin grid 
deflgrid2.dat - tripled FAST full structure deflected skin grid 
skingrid.N - FAST substructure undeflected skin grid 
skingrid-dat - FAST full structure undeflected skin grid 
skingrid2.N - tripled FAST substructure undeflected skin grid 
skingrid2.dat - tripled FAST full structure undeflected skin grid 
fgrid. N - merged fluids grids 
fe-output-dat - restart file (global data) 
fe-0utput.N - restart file (individual substructure data) 
fe-converge-dat - convergence history of a single DOF 
(standard output) - diagnostics, warnings, errors, and summary’ 
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11 NASTRAN invocation script 

The following script is used to invoke NASTRAN. The script specifies the file 
names for all the input and output files: 

#!/bin/csh 
# streamlined, non-interactive NASTRAN invoker 
unalias rm 
#clear 
set rfdir=$HOME/nastran/rf 
set nasexec=$HOME/bin/nastrn.exe 
set naschk=$HOME/bin/chkfil.exe 
set probname = $1 
echo ' ' 

if ( Sprobname == " ) then 
echo ' NASTRAN ' 
echo ' ' 
echo -n 'Please give problem id for designation of files ===> ' 
set probname = $< 
endi f 

# set ftOl=$probname.pun 
set dbmem=12000000 
set ocmem=2000000 
set ftOl=none 
set ft04=none 
set ft03=$probname.log 
set ft05=$probname 
if ( !  -e $ft05) then 

endi f 
if ( !  -e $ft05) then 

endi f 
# if we can't find the input file, reset to what was given 
if ( !  -e $ft05) then 

endi f 
set ft06=$probname.out 
set ft08=none 
# set ftll=$probname.outll 
set ftll=none 
set plt2=none 
set script=$probname.cmd 
set nasscr=$cwd/temp$$ 
set ftl2=none 
set ftl5=k.$probname 
set ftl6=m.$probname 
set ftl7=o.$probname 

set ftOS=$probname.inp 

set ftOS=$probname.dat 

set ftOS=$probname 
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#set ftl8=$probname.coord 
set ftl8=none 
set sofl=none 
# set sofl=$probname.sof 
set sof2=none 
set sftl2= 
set nptp=$probname.nptp 
set optp=none 

if ( ! -e $ft05 ) then 
else 
if ( -e nogoodl 1 then 
rm nogoodl 
endi f 
if ( -e nogood2 ) then 
rm nogood2 
endi f 
if ( -e nogood3 ) then 
rm nogood3 
endi f 
Snaschk < $ft05 

if ( -e nogoodl 1 then 
set ft04=$probname.dic 
rm nogoodl 
endi f 
if ( -e nogood2 1 then 
set plt2=$probname.plt 
rm nogood2 
endi f 
if ( -e nogood3) then 
set f t04=$probname. dic 
set plt2=$probname.plt 
rm nogood3 
endi f 

endi f 
if ( -e $script ) then 
rm $script 
endi f 
touch $script 
echo '#/bin/csh' >> $script 
echo ' unalias rm ' >> $script 
echo 'if ( -d ' Snasscr' ) then' >> $script 
echo 'rm -r 'Snasscr >> $script 
echo 'endif' >> $script 
echo 'mkdir 'Snasscr >> $script 
echo 'if ( -e '$nptp ' ) then'>> $script 
echo 'nn '$nptp >> $script 
echo 'endif' >> $script 
echo 'if ( -e '$ft03 ' ) then'>> $script 
echo 'rm '$ft03 >> $script 
echo 'endif' >> $script 
echo 'if ( -e '$ftOl ' ) then'>> $script 
echo 'rm '$ftOl >> $script 
echo 'endif' >> $script 
echo 'if ( -e '$ft04 ' ) then'>> $script 
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echo 'rm '$ft04 >> $script 
echo 'endif' >> $script 
echo 'if ( -e '$ft06 ' ) then'>> $script 
echo 'rm '$ft06 >> $script 
echo 'endif' >> $script 
echo 'if ( -e '$plt2 ' ) then'>> $script 
echo 'rm '$plt2 >> $script 
echo 'rm '$ft04 >> $script 
echo 'endif' >> $script 
echo 'if ( -e '$ft06 ' ) then'>> $script 
echo 'rm 'Sft06 >> $script 
echo 'endif' >> $script 
echo 'if ( -e '$plt2 ' ) then'>> $script 
echo 'rm '$plt2 >> $script 
echo 'endif' >> $script 
echo ' env NPTPNM='$nptp ' \ '  >> $script 
echo ' PLTNM='$plt2 ' DICTNM='$ft04 ' PUNCHNM='$ftOl ' \ '  >> $script 
echo ' FTNll='$ftll \ FTN12='$ft12 ' DIRCTY='$nasscr I \ '  >> $script 
echo ' LOGNM='$ft03 ' OPTPNM='$optp ' RFDIR='$rfdir ' \ '  >> $script 
echo ' SOFl='$sofl ' SOF2='$sof2 ' \ I  >> $script 
echo ' FTN14=none FTNl7=none FTN18=none FTN19=none FTN2O=none \ '  >> $script 
echo ' FTN15='$ftl5 \ FTN16='$ft16 ' \ '  >> $script 
echo ' FTN17='$ft17 ' FTN18='$ftl8 ' \ '  >> $script 
echo ' FTN21=none FTN13=none \ '  >> $script 
echo ' DBMEM='$dbmem ' OCMEM='$ocmem ' \ '  >> $script 
echo Snasexec' < '$ft05' >'$ft06 >> $script 
echo 'rm -r 'Snasscr >> $script 
echo 'if ( -e none ) then'>> $script 
echo 'rm none' >> $script 
echo 'endif' >> $script 
echo 'echo == NASTRAN - " '$probname' " done = = I  >> $script 
chmod +x $script 
$cwd/$script & 

26 



12 Stl FF format speciJication 

StJFF 
“STructural Interchange File Format” 

File Specification 

Introduction 

“StlFF” is a format for exchange of structural data (stiffness matrices, mass 
matrices, etc.). It is intended to be platform independent and extendable to 
include new data types without breaking existing codes. Any type or com- 
bination of types of data may be stored in a StIFF file. 

Inspiration 

Tilt: SiIFF format is conceptudiy simiiar to the im and ii+ image file 
formats. Both achieve platform independence through the use of data 
blocks. 

The formatting approach used is block oriented. Each block starts with a 
header consisting of the block name and the block length. The allows a 
reading program to skip over unneeded or unfamiliar blocks. In fact, a 
reading program must do this for things to work well. 

While the contents of each block type will be different, in general, each 
block will have a secondary header specifying the format of the actual data 
in the block, so that the data may be read regardless of the bit format of the 
writing and reading machines. 

This standard is also defined to be friendly to the limited I/O capability of 
the FORTRAN programming language. Most of the structural codes of 
interest are written in FORTRAN rather than a language with more power- 
ful I/O capabilities. Thus, data suchas block lengths are given in units of 
text lines rather than bytes so that a FORTRAN reader can loop over an 
empty ‘read()’ statement to skip past a block. 

Structure 

A StIFF format file consists of three parts: header, any number of blocks, 
and a tail. While the blocks can appear in any order, for efficiency sake, the 
writer program should write more general blocks first and more specific 
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blocks last. For instance, a stiffness matrix block should probably go before a 
mass matrix block. This is because the stiffness matrix is required for both 
static and dynamic analyses, but the mass matrix is needed only for 
dynamics. Thus, in some cases, the reader code can find all it needs early and 
stop reading. 

The header and tail blocks can be viewed as special types of block that (at 
least currently) contain no data sections. Since there are other reasons for 
no-datablocks, such as option flags, and since the header and tail blocks 
definition may change in some future version of this document, all blocks 
will have a line length value, including blocks of length zero. Thus, any 
StIFF block will have the structure: 

BLOCKNAME <number of data lines or zero> 

<specified number of data lines of data> 

In general, for ease of reading, block names will be all uppercase (the StIFF 
header is an exception). Future block type definitions may be mixed or 
lowercase if needed for clarity. Writing codes should take care to match the 
case of the block name in the documentation to avoid reader code parsing 
problems. Block names are limited to 10 characters in length. 

Block Definitions 

I> Headermail blocks 

Block: StIFF n 

The StIFF header block consists of the five-character block named “StIFF”. 
(upper and lower) case is important, allowing the header to be used as a 
“magic cookie” to determine the type of file. 
This block contains no data, but reader code should still check the line count 
variable and skip lines if required. Thus, a writer code could put some sort of 
comment ,in the header, although the use of a text block would be better for 
this purpose. 

Block: END n 
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The END tail block serves as the last block in a StFF file. Its inclusion 
allows the reader code to stop before getting an end-of-file error. As with the 
header block it should contain no data. 

II> Text blocks 

Blocks: COMMENT, TEXT, TlTLE 
These block types are all designed to allow the inclusion of lines of raw text. 
These may be ignored or read and printed as desired by the reader code. The 
different types of block names are provided so that different behaviors can be 
used. 

It is sugested that COMMENT blocks be used for data documentation and 
ignored by reader codes and TITLE blocks be read and printed in program 
output. 

I I b  Generic Data blocks 

There is an unlimited number of possible data blocks. A few generic ones are 
specified below. Others may be added as desired; reader codes should be 
designed to safely skip over any blocks that they do not understand. To 
reduce conflicts, however, application specific data should use a unique pre- 
fix. For instance, a block specifying options for ENSAERO-FE might be 
named “ENSFE-OFT”. 

Blocks: STIFF, MASS, DAMP, SQ-MATRIX 
There are three parts to a square matrix block. The first two lines are valid 
FORTRAN FORMAT specifications for reading first the matrix numerical 
data, then the pivot or index data. Thus, the first will be for real numbers and 
the second for integers. They should have parentheses around them. Exam- 
ple: “(F12.6)”. For formats without pivot or index data, the second FORMAT 
specification is still required, but is ignored. 

The second part specifies the storage format and the number of elements to 
be read. Depending on the storage format used, the number of fields on this 
line may vary. 

The third part of the block is the actual matrix data that are read according to 
the instructions in the first two parts. 

Storage Format: RAW n 
The RAW storage format stores the entire matrix explicitly. The single data 
field on the format line indicates the dimension of the square matrix. The 
actual data are stored across by row, Le., a( 1 ,l), a( 1,2) ,..., a( 1 ,n), a(2,l) ,... 

Storage Format: TFU n 
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The TRI storage format stores the upper triangular part of a symmetric 
matrix. The single data field is the dimension of the full matrix. The actual 
data are stored across by row, Le., a( 1 ,l), a( 1,2) ,..., a( l,n), a(2,2) ,... 

Storage Format: NAST 
The NAST storage format uses a NASTRAN style compression scheme to 
store a full matrix. 

Storage Format: INV n 
The inverse of the matrix is stored in RAW format. The data field indicates 
the dimension of the matrix. 

Storage Format: FACTN (FACT1, FACT2, ...) n 
A factored version of the matrix is stored. The data field indicates the dimen- 
sion of the matrix. 

Storage Format: SKY na 
The SKY storage format uses a Skyline storage scheme to store the upper tri- 
angular portion of a symmetric matrix. “na”, the length (number of entries, 
not number of lines!) of the skyline data vector is specified on the format 
line. The integer pointer vector “maxa” is provided after the skyline stored 
matrix. “maxa” is preceded by its length “nma”. Thus, a skyline store matrix 
would look like: 

SKY na 

(lines of matrix data) 

m a  

(lines of maxa data) 

Blocks: LOAD, DEFLECT, ORDER, VECTOR 
The vector storage blocks consist of three parts. The first is a storage format 
block, like the first part of the square matrix block type. The first line should 
contain a valid FORTRAN FORMAT specification for reading the vector 
data. It should be contained in parentheses. The second part is a storage 
scheme specifier. At this point only “RAW’ is specified, but others may be 
added as needed. The third part is the actual data. 

Storage Format: RAW n 
The vector is stored explicitly and is of length “n”. 

Blocks: VECTOR2, VECTOR3, GRID 
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These multidimensional vector blocks work exactly like a one dimensional 
vector block, except with double or triple the data. The length “n” in the 
RAW specifier is the length of the vector. This is followed by 2 or 3 sets of 
data of length “n”. For instance, 10 grid points would be stored as: 

RAW 10 
xl x2 x3 .. . x10 
yl y2 y3 .. . y10 
zl 22 23 ... 210 

Of course, the number of values on a single line depends on the FORTRAN 
FORMAT used. Generally, however, the transition between components will 
start on a new line. 

Blocks: IVECTOR, ENSFE-IBCS, ENSFE-IBNO, ENSFE-MAPG 

Identical to the VECTOR format, but stores integer values. 

B~OC~CS: MATRIX, ENSFE-KIE 

This block is for storing a nonsquare matrix. It is very similar to the other 
matrix and vector storage blocks. Use the SQ-MATRWRAW definition but 
with two data fields on the storage scheme line: 

The matrix is stored explicitly and is of dimension n x m 
Storage Format: RAW n m 

--- Example StIFF file --- 
StIFF 0 
COMMENT 2 
This is comment line 1 
This is comment line 2 
VECTOR 4 
(F7.2) 
RAW 2 
1234.56 
9876.54 
E N D 0  
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13 Utility Programs 
A few small, useful utility programs are included in the util subdirectory. 

Autobnode 

“Autobnode” is a utility for use with manually substructured data files 
(such as when Patran is used to chop up an aircraft). Its main purpose is to 
generate the “bnode.dut” file, but it also performs a variety of validity 
checks on the substructured data. 

To work, the program needs access to the full structure NASTRAN file as 
well as to all of the substructure NASTRAN files. A file called “jk” is 
used to control the code and tell it which files are to be used. The first line 
gives the file name for the full structure file. The second line gives the num- 
ber of substructure files. The file names for the substructure data files are 
given one per line after that. 

Example “jiZes” file 

full .dat  
3 
w i n g .  da t  
fuselage.dat 
tail. dat  

The bnodedut file is generated by assuming that consistant node number- 
ing is used between the various substructure files (this is not a requirement 
of the main code). Thus, any nodes with the same ID number are assumed 
to be the same. And any that appear in more than one substructure are then 
listed in the bnode.dat file. 

In addition, the following validity checks are performed: 
All grid points in full file must be in at least one substructure 
All substructure grid points must appear in full file 
All elements must appear in full file and in exactly one substructure 
All grid points specified by elements in a substructure appear in that 
substructure 
No unused grid points appear in a substructure 

Should any of these checks fail, a warning will be issued, and details will 
be written to a file called uutobnode.error. 

The size problem allowed by the program can be controlled by editing the 
autobnode. h header file. 



“Autosub” is an automatic substructuring code. It reads a NASTRAN input 
deck and generates somewhat equally sized substructures from it. It should 
be used with care, however, as it isn’t very bright. Basically, it sorts all the 
input grid points by a single one of their coordinates (x, y, or z), assigning 
the first N points to the first substucture, etc. Thus, it simply slices the 
structure up along one axis. 

Autosub is written in C. Before using it, the user will need to configure it 
for the problem at hand. The #define statements at the top of the code 
will need to be modified to reflect the size of the problem. Also, the desired 
slicing direction needs to be set in the “indexr” call. 

For aircraft applications, this code is best used after some manual substruc- 
turing. For a full aircraft, the engineer might manually cut the structure into 
wing, fuselage, and eppenage substructures. The=, autos& cwld be used 
to slice the wing in the “y” direction, the fuselage in the “x” direction, and 
the eppenage in the “z” direction. In such a case, the #define for “ibase” 
can be used to generate appropriate file numbers. 

Autosub also writes some of the preprocessor input files such as 
“bnode.dat”. Such files may need to be manually edited if the code is only 
slicing part of a larger structure (as in the example above). 

“E12Nas” is a program to convert Elfini structural data to NASTRAN data. 

Usage 

“el2nas” is simple to use. It is invoked by typing: 

elanas [elfini-file nastran-file] 

The default input file name is “elfini.dat”. Similarly, the default output 
file name is “nastran.dat”. If other file names are desired, they may be spec- 
ified on the command line, but both must be given. 

Limitations 

There are a number of limitations in the code due to differences in the 
way the two codes work and limitations in the available test decks. The sec- 
ond is obvious: if a certain Elfini input type or option in the demo deck(s) 
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used to develop the code are not seen, that option is not supported. 

Shear and Bending of Composite Plates 

The test Elfini desks used to develop the code include composite plates 
with either no bending stiffness or stiffness only in shear. There are no 
NASTRAN elements that support this combination. (The CSHEAR ele- 
ment, for instance, requires an isotropic material.) The converter models 
these plates as full composite QUAD4 plates. 

Solid Orthotropic Elements 

The test Elfini decks contain a variety of solid elements with orthotropic 
material properties. Only the hexahedral NASTRAN solid element allows 
this type of material. The solid wedge and tetrahedral elements require iso- 
tropic materials. For these cases, the converter models the elements using 
an approximate isotropic equivalent. 



Form Approved 
REPORT DOCUMENTATION PAGE I OMB NO. 0704-0188 

14. SUBJECT TERMS 

ENSAERO, NASTRAN, Parallel computers 

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 
OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified 

I 
ublic reporting burden lor this collection 01 inlormation is estimated to average 1 hour Per response. including the time lor reviewing instructions. searching existing data sources, 
ithering and maintaining the data needed, and completing and reviewing the COlleCtiOn of information Send comments regarding this burden estimate or any other aspect 01 this 
illection of information. including suggestions lor reducing this burden. to Washington Headquarters Services. Directorate lor inlormation Operations and Reports, 1215 Jelferson 
avis Highway. Suite 1204. Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington. DC 20503 

AGENCY USE ONLY (Leave blank) 12. REPORT DATE I 3. REPORT TYPE AND DATES COVERED 

15. NUMBER OF PAGES 

39 

A03 
16. PRICE CODE 

20. LIMITATION OF ABSTRAC 

I Month 1999 I Technical Memorandum - _ _ . ~ . ~ ~  ~ 

I 

TITLE AND SUBTITLE 

User's Guide for ENSAERO-FE Parallel Finite Element Solver 

I AUTHOR(S) 

Lloyd B. Eldred and Guru P. Guruswamy 

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Ames Research Center 
Moffett Field, CA 94035-1000 

. SPONSORlNGlMONlTORlNG AGENCY NAME(S) AND ADDRESS(ES) 

National Aeronautics and Space Administration 
Washington, DC 20546-0001 

5. FUNDING NUMBERS 

509- 10- 1 1 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

A-99VOO2 1 

10. SPONSORlNGlMONlTORlNG 
AGENCY REPORT NUMBER 

NASA/TM-1999-20878 1 

1. SUPPLEMENTARY NOTES 
Point of Contact: Guru P. Guruswamy, Ames Research Center, MS 258-1, Moffett Field, CA 94035-1000 

(650) 604-6329 

2a. DlSTRlBUTlONlAVAlLABlLlTY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified - Unlimited 
Subject Category 08 Distribution: Standard 
Availability: NASA CAS1 (301) 621-0390 

I 

3. ABSTRACT (Msxlmum 200 words) 

A high fidelity parallel static structural analysis capability is created and interfaced to the 
multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces 
ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more 
accurately modeled using the new finite element capability. Parallel computation is performed by breaking 
the full structure into multiple substructures. This approach is conceptually similar to ENSAEROs 
multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element 
equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its 
full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the 
stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conju- 
gate gradient method to solve the global structural equations for the substructure boundary nodes. 


